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Some Remarks on the Convergence of Approximate 
Solutions of Nonlinear Evolution Equations 

in Hilbert Spaces 

By Laurent Veron 

Abstract. Let aD be the subdifferential of some lower semicontinuous convex function D of a 
real Hilbert space H, f E L2(0, T; H) and u,, a continouous piecewise linear approximate 
solution of du/dt + a3D(u) 9 f, obtained by an implicit scheme. If uo E Dom(O), then 

du,/dt converges to du/dt in L2(0, T; H). Moreover, if uo E Dom(aI), we construct a step 
function q,,(t) approximating t such that lim. _ + 0 floT q1 I du,/dt - du/dt 12 dt = 0. When D 
is inf-compact and when the sequence of approximation of f is weakly convergent tof, then u,, 
converges to u in C([0, T]; H) and 'q,du,/dt is weakly convergent to tdu/dt. 

Introduction. Set H a real Hilbert space with scalar product (-, ) and norm j 
and (F a lower semicontinuous proper convex function from H into (- x, + c ]. The 
subdifferential a4 of (D is the multivalued operator from H into 6(H) defined by 

y E a8?(x) if and only if, Vu E H, (D(u) - (D(x) > (y, u - x). 

The operator aF is a maximal monotone operator on H (cf. [4]) and the semigroup 
generated by - aI has strong regularizing properties which have been discovered by 
Brezis [6]. In particular, if f E L2(0, T; H) and u C Dom(aD), then the weak 
solution of 

du/dt + a4F(u) 3 f on (0, +? ), 
(1) l~u(O) =uo, 

is in fact a strong one. If we assume Min m = 0 (which is always possible), then the 
following estimate holds 

T/ du2 1/2 IT \At t1/2 
i 

T 

(2) (jtj | tdt) ? fl2tdt)+ J fldt + dist(u0, K), 

where K {x E H: (D(x) = 0). Moreover if un is the solution of 

{ dun/dt + a(Duj) 3 fn on (0, + x ), 
(3) ~~~~Un(o)= 0n 
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326 LAURENT VERON 

and if limn- + oo uOn = uo and limn- + oo 'f I I-fn I2 dt = 0, then 

[(i) m IIU - UnIIC([O,T]; H) '0 
n + oo 

(4) Tdu du 2 

(4) t ~~~~~(ii) lim I|dn-d| t dt = O. 

However, it can be noticed that if (4)(i) is an obvious consequence of the properties 

of weak solutions and remains valid in more general cases, (4)(ii) was only dis- 

covered in 1977 (cf. [5] and [1] for a similar result). 

In this paper we introduce the approximate solutions of (1) through the implicit 

scheme 

( ~ ~ ~~~~ n _ + a?(Du) k 
kI k = 1,2, ...,IN(n), 

(5) tk tkI 
n f 

(un =UO and O to? < ti < ..c t N(n) = T. 

If fn is the step function taking the value fnk on (tk -l, t,'), uk the continuous 

piecewise linear function taking the value Uk at tk, and 'n the step function taking 

the value tk- I on (tnk- , t,k), then 

(T du 2 1'/2 T2If 1/2 T1 
(6) ( |n |n dt <( If2 n dt + A Ifnldt + dist(uo, K). ~~' ~J0 dt 2jI Fd+2 

Moreover if limn + 0. Max <k N(n) -tnl) 0 O and limn+ ?JoTo n-fl2dt 
0, then 

[(i) lm IIUn - UIIC([O,T]; H) 0, 
In + oo 

(7) T_d du 2 
|(ii) lim A|dndt|7n dt = O. 

It must be noticed that if (7)(i) is already well known in more general cases (cf. [7]) 

and is more or less a consequence of the theorem of Crandall and Liggett, (7)(ii) is 

new and could be of some use in numerical analysis. However, in the general case it 

appears that it is not possible to obtain error estimates for the convergence of 

dun/dt. 

When D is inf-compact and fn weakly convergent to f in L2(0, T; H), then (7)(i) 
remains valid and qndun/dt is weakly convergent to tdu/dt as n -* + xc. 

We give also an extension of that type of result for a more general operator A 

generating a semigroup (S(t)),,o which is compact for t > 0. 

The Main Estimates. Set D a lower continuous proper convex function from H 

into (-xc, +xc] such that Min = 0 and K= {x E H: ?(x) = 0). For T> 0 we 
set Pn = {O = to < ti < c tn N() = T} a partition of [0, T], k = tn - tn- and 
1I Pn Max Ok<N(n) 4n . We define the two step functions 'n and fn from [0, T] into 
R and H, respectively, as the functions taking the values tn ' and fkon (tnk ,tnk). 
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Thanks to the maximal monotonicity of aD, the sequence {Un} k=O N iS well 
defined by the following relations 

(8) k n n k = 1,...,N, 

-u U. 

If u, is the continuous piecewise linear function taking the value Uk at tk, then 

tfnl tkl + t tk k and dn 
n 
nk Un(t) = k n k n dt k 

En En En 

on (tk-', tk). 

THEOREM 1. Suppose u0 E Dom( 8LD). Then the following estimates hold: 

TJ du 2 1/2 ) (JTnlf 1/ ) 2 J 

n~~~ dit TlfK ) 

(10) (1 | ~dt n| dt) < n( J Inl dt) + / JInldt 

(9) ~~~~~~~~~~~~~~~~~1 
+ - dist(uo, K), 

2 

(10) (f~T du 2 d)1/2 (T If 1)/2? fI~d 

(10)~~~~~~~~~~~~~~~~~~ 
+ dist(u0, 9K) 

V26 

for all 6 such that 6 = tP, 1 < p < N(n). Moreover if uo - Dom(D), we have 

(11) (fT du 2 dt) 1/2 (JT f dt) ? du 2I(u0). 

Remark 1. If we no longer assume Min = 0, we obtain inequalities similar to 
those of Theorem 1 in changing D and fn. To get this we consider xo F Dom(aD) 
and t - aeD(xo), and we set D(x) = D(x) - (xo)- (, x - xo) for x E Dom(D) 
and In = fn . As ?=' - (, {un} satisfies (8) with 1D and fn replaced by 1' and 
f and Min D 0. 

Remark 2. If we letfn = 0 in Theorem 1, we deduce from (9) that 

(12) ndtn 2 dt) ? - dist(uo, K), 

for any 0 < t < T. If we want to have a pointwise estimate on dun/dt, we have to 
suppose E k = T/N, for k = 0, 1,...,N. We then deduce from the monotonicity of 
a8D that I dun/dt I is nonincreasing. Hence 

(13) Ndt (t) = u - uk- 11 < dist(u0, K), 
dt (t) T I n n n,k kk-I 

nfn 

for any tk7' < t < tk ' kk> 1. 



328 LAURENT VERON 

Before proving our estimates we need the following result which is somewhat 
analogous to Lemma A.5 of [4]. 

LEMMA 1. Suppose (an) and {bn} are two sequences of nonnegative numbers such 
that 

(14) -a 2 < -a 2+ aj bj V n aO . 
12 12 j=l 

Then 
n 

(15) an < a0 + 2 bj Vn a O. 
j=l 

Proof. By induction we define the nonnegative sequence { al}n), by 

(16) 12 a2a + 2 ajbj Vn > l. 
2 2 20 1 

Then an - 2anbn - (a + 2 la.b> 0. But a1 na +2Ei4a1b1, so a2 - 

2ab- an n1 =Oandan=bn b+ b +a1 . Hence an < 2bn + an_,and- a an 
+ 22% 1 bj. As it is easy to see by induction that an S an for n > 1, we get (15). 

Proof of Theorem 1. First we assume u0 e Dom(4i), and we prove (1 1). From the 
definition of (Uk}, we havef,k - (UnkUk-1 )/e1k e a4T(uk). Then 

k k-I\ 

kn k-If 
k _. n n > (t(Uk) 

- 
(D(ukj1); 

En I 
so we get 

k k 
2 

(17) u u' + (Un n n n -n ) I k < N. 
En 

Summing all those inequalities, we have 

N Uk _ uk-I 2N k u _Uk-I 
iu - 

n 
2 nk + 0 UN) - (D(UO) S2 

k Un Un- 
nks 2 En (Unl-P( fn kfk 

k--l (8n) k=1 En 

that is, 

(18) f~~T du~ 2 T d 
(18) |dtn dt +- o(Un) < ('(Uo) + fn I dt )dt. 

So we deduce (11). 
From (17) we get for 1 < k s N, 

(19) u n nu ' Ekk- ? (4)(Uk) - 4)(Uk-))tk-I < uk -ut' tk ( l9) ( k 2 n n (? n ) ( n n ))k f5 t n uk n n - 

Summing those inequalities and using the fact that 
N N-I 

z (fD(Uk) - 'D(Uk-1))tnk'I - y (UN )tnN1 - 4 q (Uk)(tnk- tnk1) 
k=l k=l 

N-I 
- 

(U)t_I- 4DUkE = n tn - (n )n 
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we deduce that 

z |Un FjktkI + 4(UN)NX 

k- U2 n 
' 

Un 
+ k=1 (En) 

N u~ kuk- N-1 1 
< :: (k Un Un 

f ktk-I + 
z 

?(Uk)Ek fk k nnnn 
k=1 E cn k / I 

and so, as O 0 in H, 

(20) T du ndt< fn n( )ndt + ) ? n ) dt, d ct dt ~ Unt 

where ia is the step function taking the value uk on (tk-, tk). By Schwarz inequality 
we get 

(21) (T n n dt) < (f (Un) dt) + (| IT1n dt2 

On the other hand, we have for any v e Dom(4) 

( ) 4(n ) tfn K gV - Un 

In particular, if v E K, D(uk) - (V) - (uk) and 

But (uk - uk ,un - v) =((utk - v) - (us' - v), Un - v) >42| n - V2 - 

2j 1 - IV 12. So we get from (22) 

N 2 N 

( P(Uk)>? + luN-vl s (fkk, uk-v)v V+ 2ju kvIN, 
k=l k=lI 

that is, 

(23) o (fT(n) dt + 2 Iun vI < 2 f n+ ( Un;-\) dt. 

Moreover, that last inequality remains true if we replace T = t N by tnk and U N by U k 

so 

2 |uk -v 
+ :: 2(Uj)ejn 

(24) 1=2 

N= IJ n1/2 vn jI 2 uo v|2 + -(u' )E 

By applying Lemma 1, we deduce 

) +2k 1/2 k 
(25) t luk - v|2 + 4 <>( un )EJ < |uo - v| + 2 If|tJ|?J . 

j=l~~ j=, 
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In particular, for k = N, we have 

(26) 1/( 2In Pt 1 I uo v+ IfnIdt. 

From that inequality and (21) we get (9) when uo C Dom(D). For uo c Dom(8D) = 

Dom(D), we consider {uOm} e Dom(D) such that uOrm -m- ooU0. If {un,m} is the 
sequence of continuous piecewise linear approximate solutions defined by the same 
implicit scheme as un, with initial data uOm instead of uo, then 11 Un - Un,m 11 C([O,T]; H) 

u 0 - uOm . Hence we get (9) as limm + ?o dUn m/dt =du/dt, uniformly on 

[0, T]. 
In order to get (10), set 6 = tnP for some p > 1. We have 

f |( n ) dt [Min {D ( u): 1 < i p}; Max { D ( u ) I < i p 

If Min{tI(u'): 1 < i < p} = (D(u )k then (D(uuk) o (1/6)fO F(in) dt. In summing 
the inequalities (17) for k = ko + 1,. . . ,N, we get 

T _d 2 T 

Iko|d dt t (n )(U 
|ko fn t, dt)dt 

so we have 

(7 du 2)1/2(T7If 1/2 (i )8 1/2 

(I|dn |dt) 
n 

| I2n dt) + ( ?(Dn) dt) 

But, from (26) with T replaced by 8, we have 

( 04(D(n) dt ) uo -v V+ I fn It dt. 

With those two last inequalities we deduce (10). 
Remark 3. By changing slightly the proof of (9) we can also obtain the following 

inequality valid for any v E Dom(C): 

dt -qn dt < -qn2ftf nIdt 
(27) 1 

+-Iuo-vI+ T'D(v). 
F2 

To get this, we start from 

O (v) 
-- U U) 

n n k - ) 
k Vv Dom(D), 

and then we get 

IT)(D n ) dt + Iiu N -VI2 < I|uo- VI 2+ D(v) + TfSn-)d 

Using (24) (with 2 u o-v 12 replaced by I 
I U- V 12 + T'D(v)) and Lemma 1 we 

deduce (27). 
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The Convergence Theorems. We still keep the notations of the first section and we 
suppose that u is the strong solution of 

(28) dt + a?(u) 3 f on (0, + oo)9 

u(O) = uo 

with u0 C Dom(aD) and f C L2(0, T; H). Our first result is the following 

THEOREM 2. If u0 E Dom(8'D) and limnoo IIPn I limn+oOfOTIf fn 2 dt 0, 
then 

[(i) lim IUn U QC([O,T]; H) 0 
In- +oo 

(29) {(i T du du 2 

(2)(ii) lim | n - d n dt = 0. 

Moreover, if uo C Dom(QD), then 

i T dun du 2 t (30) lim d - 2dt =0. 
n-+c d dt 

Before proving Theorem 2, first notice that (29)(i) is known in quite more general 
cases (cf. [7]). We first need the following result. 

LEMMA 2. Suppose u0 E Dom(a8D) and lim n IIPnI limn + oo TIffn 12 dt 
0. Then 'qndunldt converges weakly to tduldt in L2(0, T; H). 

Proof. As 11 Pn 1-* 0, for every E > 0, there exists no C N such that 'qn(t) > E/2 on 
(E, T] for any n > nO. By Theorem 1 and classical results on maximal monotone 
operators (cf. [4]) dunldt converges weakly to duldt in L 2((0, T]; H). 

Set 4 C L2(0, T; H). For any a > 0, we have 

li rn dt t dt + dt = l rn dtn _ t dt VJ)dt 
JT(dundu ,#)dt T 

I jadun du)dt 
+fT(71 dUn -t dty)dt 

When n tends to + x, 'qn(t) - t tends to 0, uniformly with respect to t, so 
( du~ n d 

lim fT d tdt 4iJt *0 
n f* +oo dt dta 

Set 8 > 0. There exists v C Dom(D) such that u0 - v I< 8. For such a v there 
exists ao > 0 such that for 0 < a < ao and n E N we have (see Remark 3) 

a ~~1/2 a 

(1a 2) 10+ 2 jfnjdt+ a(v) < 

as I fn I is uniformly equi-integrable on (0, T). Hence ( fo' I dunldt 12n dt)'/2 < 28. If 
a is also fixed such that (fo I du/dt 12t dt)'/2 < 8, we deduce 

lim sup l(n dtn tdt t ) dt < 3t3lIlIL2(O, T; H). 

Hence 'qndunldt - tduldt converges weakly to 0 in L2(0, T; H) and similarly 
'n(du /dt - du /dt), as lim m IfoT(t -n) I Idu dt 12 dt= 0. 
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LEMMA 3. Under the hypotheses of Lemma 2, we have 

(31) lim sup dt n f T(u) dt, 
n- +oo 0 0 

Un being the step function taking the value u k on (t'k-7, tk). 

Proof. We start from the following inequalities valid for v C Dom(D) and 
1 ?k<N. 

(32) eD(u(t)) - (Un() > ( fn u k , u(t) -n 

(33) v)- (un )>(fn - k ,-nk) 

From (33) we deduce 

k ~~~~kk 
tnD(V) - f D(Q1) dt > |n(fn, V - a1) dt U 

j 
(un - ujn1, v - un). 

But -(uJ - uJ{7, v - uJ) I1 uI U- V 2 - Iu j- IV 12, so we get 

(34) f )D(in) dt ? t< F(v) - f n( v n- in) dt- 2 v - Un + 2 Iv - uoI2. 

On the other hand we have from (32) (integrating over (tn, tj+') and summing for 
j = k,...,N) 

(35) k0 ( u ) dt < k k (L f - 
un) dtk (dt ) 

From (34) and (35) we get for v E Dom(D) 

f 
)~(n) dt 

? 
tnk((V) - n 

(fn, V - - Uk1 + - 

(36) 
6 n 

n) dt -2v un ? I-V - uol 

+ fk (u) dt- fk(fnu Un) dt +J ( dt u U n) dt. 

For E > 0, as 11 Pn II n +?- 0, there exists a sequence {tkn} such that tkn E. As 

{fn and {dun/dt} remain bounded in L2(tkn, T; H) independently of n and as 
u - in goes to 0 in L??(O, T; H) when n tends to + ox, we deduce from (36) 

lim sup f (n) dt (v)-f(f, v - u) dt-2 v-U() 
(37) n - +oo?O 

* Ijv Uol2+fTF(u)dt. 

As u is continuous, we deduce (31) in letting E -O 0. 
Proof of Theorem 2. First we prove (29)(ii) by supposing u0 C Dom( aD). 
From (19), as in the proof of Theorem 1, we get 

( T dU 2 T du 
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But we also have, obviously, 

(39) fT | tdt + TD(u(T)) =fJ(u)dt + (f,fdi)tdt. 

Moreover as lim tN-I = T, TtJ(u(T)) - lim inf t?N- D4(uN). Using the 
fact that limn- +oo f0T(fn, dun/dt)>j dt = foT(f, du/dt)t dt and Lemma 2, we deduce 

Tdun 2 T U2 
(40) rim sup fT dt ndt < d tdt. 

n- +oo 0 td 

As {X/;ijndun/dt} converges weakly in L2(0, T; H) to Vfdu/dt, we conclude that 

lim T dUt d dt 
n- +o dt d 

But 

Tdu~ du2 
12 

{lo I dt dt 

fT dun du 2 11/2 dT d2i \21/2 

< t| dn -d | dt} + { |dt| 5-,) dt} 

From Lebesgue's theorem and the estimate (2), 

lim 
T dU 

2 

(/-) 2dt = O 

so we get (29)(ii). 
To prove (30), first we notice that {du /dt} remains bounded in L2(0, T; H) when 

Ue C Dom((D). Hence, from the maximality of a3D, it converges weakly in 
L2(0, T; H) to du/dt. As we have already seen in the proof of Theorem 1, we have 

Tdu~ 2 T d 
IT dn dt s ??(uo) + | n d dt - (DUN ) 

so we get 

(41) lim sup t n d t s D(uo) + 2 ( dt - d(u(T)). 
n-?cr 0o dt dt 

But as I du/dt 12 = d(D(u))/dt + (f, du/dt) a.e. on (0, T) (cf. [4]), integrating on 
(0, T) we obtain 

lim sup T dun 2rd t -T d2 d 
n-o dt ?Jo I d it 

So we have (30), which ends our proof. 
Remark 4. Using similar devices, we can obtain the convergence result (29) in 

replacing the initial data uo of {unk} by a sequence {uO,n in Dom(a3D) such that 

UO,n n +oU. Moreover if uO,n C Dom(O) and (D(uO,n) 
-- 4D(uo), we have (30). 

Remark 5. We can also obtain some results concerning the convergence of 
{ 4(un)} from Theorem 2. For example, if uo E Dom(4), we have 

(42) lim kII(Un) - (D(U)Ic(r[0,T) ?0 
n- +oo 
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In order to prove this, we start from (17) and we have for 1 ? k < N, 

,k\ft(d ufkldu t dU 2 
(43) n + fn | dt 4~un)?4~(uo?jn~fndt)-J dt 

For t C [0, T], as 11 Pn I 0, there exists a sequence {t kn} such that im tkn = t and 

n> t so nD(un) = n'(in(t)) and 

(44) lim sup 4(an(t)) < D(U0) + f, dt dt- dt 

But from [4] 

4I'(u0) + f(, 'd) dt-|- f 5t dt = D (u(t)) im inf 4(rn((t)); 
0 t t 0 nl- +o 

hence limn . +00 4'(an(t)) = 4(u(t)), and it is not difficult to see that this limit is 
uniform on [0, T] and that i1 can be replaced by un. 

For k 2 0 we set Qk ={v E H: ?(v) + I V 12 < k}. Our second result is the 
following 

THEOREM 3. Suppose Q2k is compact for any k > 0 and uo E Dom(a3). If 
limn +00 I1 Pn 0= and if fn converges weakly to f in L2(0, T; H), then 

(i) lim lUn - UIC([0,T]; H) = 0, 
(45) 

n + oo 

(45) {(ii) n dun stdu weaklyinL2(0,T;H)asn - +00. 

Moreover if uo C Dom(4'), then dun/dt converges weakly to duldt in L2(0, T; H). 

Proof. First we suppose that u0 E Dom((D). From (10) {dun/dt} remains bounded 
in L2(0, T; H), so we deduce from (18), with N replaced by k, that {40(in(t))) is 
bounded, uniformly with respect to t and n. From the convexity of the function 4D, it 
is the same with {4P(un(t))}, and, as {un(t)} is bounded, the set {un(t)} is relatively 
compact in H for any t > 0. From (10) the set {Un} is equicontinuous, so by Ascoli's 
theorem, it is relatively compact in C([0, T]; H). Hence there exist a subsequence 
{un,J and iu c H'(0, T; H) such that U n' ` n'* +oo Ui in C([0, T]; H) and dun,/dt 

n' +?00 du/dt weakly in L2(0, T; H). Hence ui satisfies (28) and is equal to u, so 
instead of the subsequence {un,}_we can take {un in the previous convergences. 

We suppose now that u0 C Dom(aDI). There exists a sequence { uomn} in Dom( 4) 
converging to u0 as m + x. If Un m iS the continuous piecewise linear solution of 
(8) with initial data UO,m instead of u0, then 11 Un- Unrm 1 C([0,T]; H) < 1 UO - UO,m I 
Hence {unj converges to u in C([0, T]; H). But as Lemma 2 remains valid we have 

(45)(ii). 
Remark 6. Using classical estimates on convex functions, it is easy to check that 

1D((I + Xa4)- Ix) (X > 0) remains bounded when x is bounded. If 52k is compact for 
any k '> 0, the resolvents (I + XAD)'- are compact operators, and then the semi- 
group (S(t))to generated by - a is compact for t > 0. In the following section we 
give an extension of Theorem 3 to a more general situation. 

Remark 7. As the convergence of {dunldt} in both Theorems 2 and 3 is obtained 
via weak compactness and lower semicontinuity arguments, it is clear that in the 
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general case it is not possible to obtain any error estimate of interest (see (55), 
Lemma 4). However, such error estimates should exist in many applications. 

Extension to More General Operators. Set A a maximal monotone operator of H 
and (S(t)),,o the semigroup of contractions of D(A) generated by -A. Thanks to 
the maximal monotonicity of A we can construct a sequence { u'} with the relations 

(46) _____ - +AU k 3 k k = 1,2,...,N(n), 

{u= UO C D(A) and O = to < t' < < t N(n) = T. 

We define the functions fn and un as before. If f is a given function of L1(O, T; H), we 
set u the weak solution (cf. [4]) of 

Fdu 
( dt -+Au)3f on[O,T], 

u(0) =U0 E D(A), 

which means that u E C([O, T]; H) satisfies u(O) = uo and 

(48) + lu(t) 
- 

xI2 
- lu(s) - x <1 (U(T) -X, f(T) y)dT, 

for any x C D(A),y E Ax and O < s < t < T. 

If h is defined on (0, T) X (0, T), we set 

119 h ll=inf t 11g||L'(0, T) + ||AiL'(0, T) f and g (E L'(0, T), 

h(a, T)j Af(a) + g(T) a.e. on (0, T) X (0, T)}, 

and we call W the completion of C([O, T] X [0, T]) for Ii 11* (cf. [7]). 

THEOREM 4. Suppose the operators S(t) are compact for t > 0, the set of real valued 
functions hn( T, a ) = 

I fn( T ) -fn(a ) I is relatively compact in W, lim n IP+JI 0 

and { fn} converges weakly to f in L'(O, T; H). Then {Un} converges to the solution u of 
(47) in C([O, T]; H). 

Proof. We set vn the weak solution of 

(dvnldt 
+ Avn 3 fn on (O, T), 

(5)v(O) - u E D(A). 

As the set { fn I} is uniformly equi-integrable on (0, T), we deduce with a slight 
modification of the proof of Theorem 2 of [2] that {vn} is relatively compact in 
C([O, T], H), so there exist ui C([O, T]; H) and a subsequence {vn,} of {vn} such 
that vn, -i in C([O, T]; H). For any x C D(A), y C Ax, and 0 < s < t < T, we 
have 

(51) 2 9vn(t) - x- 2 
Vn(s) - xl tf (vn (T) - x, fn,(T) -y) dT. 

Going to the limit in (51), we see that ui is a weak solution of (47), so i= u and 

limn, +o vn = u in C([0, T]; H). 
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At this point of the proof we need the following result: 

LEMMA 4. Under the hypotheses of Theorem 4, un - Vn converges to 0 in 
C([O, T]; H) as n --+ oo. 

Proof. That result is a consequence of Theorem 2.8 of [7]. We first suppose that 
uo C D(A), and we consider a partition Pm which is a refinement of Pn: Pm = 
{? =so <sm < ... < sm = T}, and we construct the sequence {ffj} as follows 

[52) | 51 51 + Ai 3J fJn7 j= I ,... .M, 
(52) -m <I 

mo= U0, fm = fnk if (S jy1, sj ) c (txk-I, tk). 

Fory C Auo we set n(T-s) = fS (I fn(a)I +I yI)) da and 

hn(a, T-s + a)da if T s, 

(53) G(wn, hn)(s, T) = n(T - s) + T T 

-|h( T + a, al) dax if s 
> T. 

Set Hm'n the piecewise constant function on (0, T) X (0, T) taking the value 
vj - un Ion (sJ- , sm] X (tn', t,]. For a function h defined on (0, T) X (0, T), 

we call h the piecewise constant function taking the value h(sJ, t k) on (sj-7, sJ] X 

(tn , tn] 

If Co C C2([- T, T]) and h C C2([O, T] X [0, T]) with h(O, 0) = 0, Theorem 2.8 of 
[7] gives 

||H m.n- G(Wn, hn)||Lo((O,T)X(O,T)) 

(54) < 211n - IILO(-T,T) + 2hn - hil* +1hSA - il* 

+2IIPn|I { Tlli3 "l|L(-T,T) + ll||'ll1(-T,T) + (1 - 2T)2llhllC2([o,T]x[O,T])1. 

Moreover lihA - hII* < T IIhA - h II L((o,T)x(o,T)) and as h is continuous, that last 
quantity goes to 0 as n --+ +x. When m -- + x, the step function vn m defined from 
the sequence {inJ} converges to vn uniformly on [0, T]. As G(n , hn)(s, s) 0, we 
get 

||Un - VnlIC([O,T]; H) - 21Iwn - OIILy(-T,T) + 24Ihn - h|* + lim sup - 
m- +oo 

(55) +21IPn|| { Tlw"llL-(-T,T) + IIW IIL(-T,T) 

+ (1 - 2T )2h lhl1C2([O,T]X[O,T])} 
As {I fn } is uniformly equi-integrable on (0, T), the functions wn are equicontinuous 
and uniformly bounded on [- T, T], hence relatively compact in C([ - T, T]). By 
hypothesis the functions hn are relatively compact in W. So there exist 5 C 
C(- T, T]) and h C W such that 

(56) lim sup iiUn - VnIlC([O,T]; H) - 211I- WIuO(-T,T) + 2||h h||i 
n- +oo 

That last quantity can be made as small as we want, the density of the test functions 
(C, h) in C([-T, T]) X Wbeing easy to prove; so lim n IIu+o -Vn Il IC([o T]; H) = 0. 
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If u0 ED(A), we consider a sequence uOm E D(A) such that uO m *m-+OO U0, 

and we get as previously 

lim sup IIun - VnIIC([O,TI;HI) < 21uo - uomIl, 
nl- +00 

which ends the proof. 
End of the Proof of Theorem 4. We have 

IIUn - UIC([0,TI; H) ?IIlUn VnhIC([0,TI; H) + lIVn - UIIC([0,TI; H)- 

From Lemma 4, limn-c + Io 11 Vn- Un C([0,T]; H) -0 and, from the first part of the 
proof of Theorem 4, limn +o 11 Vn - U 11 C([0,T; H)= 0, which ends the proof. 

Remark 8. Our result remains true if A is an m-accretive operator of some general 
Banach space X when we replace a weak solution by an integral solution (cf. [3]), 
under the assumption that the set {(u, f ): u E C([0, T]; X), f E L'(0, T; X), u is an 
integral solution of (47)) is closed in C([0, T]; X) X L'(0, T; X)-weak, in particular 
if X is uniformly convex. Without that assumption we just obtain the relative 
compactness of the {unj in C([0, T]; X). 
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